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In this paper we return once more to the problem of transverse bending of homogeneous
transversely isotropic plates, including the effect of transverse shear deformation. Our object is
to describe an approach to the problem which reproduces our earlier equations of
two-dimensional plate theory [2] exactly, while at the same time leading to new supplementary
information concerning certain practically important three-dimensional aspects of the problem.
The significance of this supplementary information will be shown for the example of the problem
of pure bending of an infinite plate with a circular hole.

Our starting point for the derivation of two-dimensional plate theory is once more the
conventional system of equilibrium equations of three-dimensional theory

fTx.x + Tyx.y+ Tzx,z = 0, etc.

together with stress strain relations which are here taken in the form

(1)

and

fT. - VfTy
U.• = E

fTy - VfTx

E
U.y+V.x Txy
2(1 + v) ="E (2)

'T.z
U.% +w,x = G'

Ty%

V,z + W. y = G'
fTz fTx + fTy

W,z = E
z

- vz~, (3)

and together with face boundary conditions

z=±ih; fTz=O. 'Tzx=O. Tzy 0, (4)

where for simplicity's sake, and with no significant effect on the conclusions to be established, we
omit consideration of loads distributed over the faces of the plate.

In our earlier work[2] we obtained a system of equations of two-dimensional theory upon
introducing approximate stress distributions

Mx z Vx [1 (Z )2]
fTx = h2!6 h12' Txz =2h!3 - h!2 ' etc. (5)
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into a suitable minimum complementary energy condition, and upon evaluating this condition in
conjunction with an application of the Lagrange multiplier concept.

In what follows we retain our assumption that the distribution of transverse shears may be
taken to be parabolic, approximately. However, we abandon our assumption that (1'" (1'y and Txy

vary linearly across the thickness (which is an entirely adequate approximation for the derivation
of our approximate two-dimensional theory through use of the minimum complementary energy
condition, without however being equally adequate for the determination of the effect of
transverse shearing strains on the dependence of (1'" (1'y and Txy on the thickness coordinate z).
Instead we proceed as follows. We take account of the fact that, by equilibrium considerations,
the transverse normal stress (1'z is small compared to the transverse shearing stresses Txz and Tyz,

and these in turn are small compared to (1'" (1'y and Txy, by omitting (1'z altogether in the stress
strain relations and by approximating Txy and Tyz in these relations as follows

3Vx (I 4 Z2) 3Vy (1 4 Z2)u.z +w.x =2hG - h 2 ' v.z+w,x=2hG - h 2

(1'x + (1'y
w,z = -vz---g;-

and

(1'x U,x + VV,y (1'y V,y + vu.x Txy = U,y + V,x

E = t - v2
, E = 1- v2

' E 2(1 + v)'

We now integrate (7) in the form

(Z crx+crYdW =W(x,y)- Jo vz---g;- z

(6)

(7)

(8)

(9)

and introduce this relation into the approximate transverse shear stress strain equations (6). From
these we obtain

(10)

with a corresponding equation for v.z• We next observe that in these equations the stress sum
crx + cry contributes an effect of the same order of magnitude as the stresses Txz and Tyz• Therefore
it is legitimate to here approximate cr. + cry in the form

(II)

It turns out that, numerically, the effect of the (crx + cry)-term in (10) will be negligibly small
compared to the effect of the Txz-term, for normal ranges of values of vzGIEz. We will limit
ourselves here to a consideration of the problem subject to this restriction and replace equation
(10) by the simplified relation

(12)

again with a corresponding relation for v.z•
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Having (12) we conclude immediately that to the same degree of approximation

together with
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(13a)

(13b)

Introduction of (13) into equations (8), and observation of the equilibrium equation
Vx •x + Vy•y = 0, gives as new supplementary information concerning the three-dimensional
aspects of the problem of plate bending expressions for bending and twisting stresses of the form

(14a)

(l4b)

(14c)

Having equations (14) we obtain expressions for bending and twisting couples in the usual
way, with D = Eh 3/12(1- v2

), in the form

(15a)

(l5b)

(15c)

and we note that these equations are in exact agreement with the corresponding relations (In to
(IV) in[2], upon introducing the stipulation that p = 0, and upon setting E = 2(1 +v)G in
equations (15).t

For what follows it is of importance to compare the contents of (15) with the expressions for
the surface values of the stresses (Tx, (Ty, Txy as given by equations (14). Evidently, we have from
equations (14),

(l6a)

tWe note in passing the possibility of introducing effective rotational displacement components I{I. and I{I" so that

50h 50h
V. "'-6-(1{I. + W.• ), V, "'T(lp, +W.,)

and therewith, in place of equations (15),

M. '" D(cp•.• +vq>",), M, '" D(I{I,,y + vq>•.• ), 2H., '" (1- v)D(I{I•., + I{I,.• ).
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(16b)

(16c)

and the noteworthy difference between the right hand sides of (15) and (16) is the absence in
equations (16) of the factor 6/5 which occurs in front of the terms with Vx and Vy in equations
(15). To show the significance of this difference we consider in what follows its effect on the
solution of the problem of the stress concentration due to the presence of a circular hole in the
otherwise uniform transverse pure bending of an infinite plate, as previously considered in [2].

Introducing polar coordinates r, 6 and making use of the notation and also of the results in [2]
the problem which is now being considered is defined by means of the boundary conditions

, = 00: u = u I +cos 26 H = M sin 26
lVlr lVI0 2 ' rO 0 2 '

, = a: Mr = 0, H ra = 0, Vr = O.

(17a)

(17b)

To be determined on the basis of these boundary conditions are in particular a stress couple
concentration factor kB , defined by kB = Mo(a, 1T/2)/Mo, and in addition to this a maximum-stress
concentration factor H, defined by H = (To (a, 1T/2, h/2)/(To, where (To =6Mo/h 2.

In order to evaluate kB and kfJ we make use of expressions for Mo and (To(h/2) which in
accordance with equations (15) and (16), in association with equation (IlIa) in [2], are

(~) = _ 6D[W,r+ W.oo+ W _0(Vo.o+ Vr)](To 2 h2, ,2 V .rr Gh , , .

(18)

(19)

In this we now make use of the expressions for W, Vo and Vr which were obtained in [2] for the
boundary value problem defined by the boundary conditions (17) and by the associated
two-dimensional differential equations. We furthermore make use of various relations and
determinations carried out in[2]. These leave us with expressions for M8 (a, 6) and (To(a, 6, h/2)
which are of the following form

(20)

and

In this Ko, K 1 and K 2 are modified Bessel functions and 1J- = VIOa/h.
Equations (20) and (21) imply as expressions for kB and kfJ

k
B

= 3(1 + v)K2 +2Ko kfJ = 3(1 + v)K2 +2Ko-4K1/31J-
(1 + v)K2 +2Ko' (1 + v)K2 +2Ko .

(21)

(22)
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Having equations (22) we are now in a position to compare our results with the results of an
exact analysis of this stress concentration problem, within the framework of three-dimensional
elasticity theory, by Alblas [1]. It was found by Alblas that his exact values for the stress couple
concentration factor kB were in close agreement with the corresponding approximate values
in [2]. Alblas also obtained what amounted to exact values for the maximum-stress concentration
factor k ~ and he showed that, in the range of values of the ratio 2a Ih which he considered k~

may differ from kB by as much as 10 per cent ([1], p. 99), consistent with the observation in[2]
that "if standard plate theory gives a value of 1·5 and the present theory a value 2·0 (for the factor
of concentration of stress as approximated by the stress couple concentration factor) then it is
believed that the actual value lies in between 1·90 and 2,10". In this context it is of special
significance that the new approximate maximum-stress concentration factor U, in equation (22),
does in fact give numerical values which are in excellent agreement with Alblas' values in the
2alh-range considered by him, with the differences between Alblas' exact values of k: and the
present approximate values being considerably smaller than 1per cent, in accordance with the data
in Table 1.

Table I. Values of stress couple concentration
factors kB and of maximum-stress concentration
factors k~ for transverse pure bending of an
infinite isotropic homogeneous plate with a
circular hole, as a function of the diameter-
thickness ratio 2a/h, with Poisson's ratio II = 1/4

kB k~

2a
A R A R

h

0 3 2·47
0·5 2·50 2·18
1 2-268 2·243 2·052 2·038
2 2·045 2·038 1·938 1·922
3 1·960 1·956 1·865 1·875
4 1·914 1·912 1·841 1·850
5 1·896 1·885 1·830 1·835
00 1·769 1·769 1·769 1·769
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